Investigation of the Nanoscale (Ni,Fe)Al Precipitates in the Ferritic Superalloy by USAXS
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Summary

O®A theoretical model that incorporates polydisperse form factor and a phenomenological structure factor is

2\ 2 employed to predict the precipitate parameters in the ferritic superalloy. Fitted results compare favorably
Non-linear least square fitting for 8 parameters: N, |Ap[" V], l\c,AR,6,L,0,b with complementary TEM characterizations.

Validate the fitted parameters by TEM precipitate characterizations ®As Al% increases, average inter-particle spacing becomes smaller, associated with an improvement in creep

resistance due to inhibited dislocation motion by precipitates. After creep, particle coarsening is observed.
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