
Air Pollution And Climate Change - Who Takes The Blame ?
C(1s) NEXAFS spectroscopy on fine particulates “Feinstaub” could provide answers  
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Airborne fine particulate matter, in particular solid combustion products like soot from fossil fuel and biomass burning, is increasingly under scrutiny for its adverse impacts on human health and climate change. As a matter of fact, quite recently have some governments in Europe 
have imposed restrictions on public traffic in order to curb emission of fine particulate matter (Feinstaub) from vehicles. In particular are diesel engines blamed for such pollution, but very recent studies press releases in Switzerland, for instance, point to potential other sources for 
pollution from carbonaceous particulate matter, for instance emissions from “cheminee” wood in domestic furnaces. Some of the data shown in this poster support this alternative view. This poster summarizes research activities on this important topic that have been carried out by 
the Consortium for Fossil Fuel Sciences at the University of Kentucky in the past four years, involving the four major synchrotron radiation centers in the U.S.A (SSRL, ALS, APS, NSLS).
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Objective

Carbon-NEXAFS of Single Diesel-PM Particles with STXM

Left: Correlation between mortality and PM concentration [6 cities study; 1]. Right: 
Coal electric power plants in Kentucky/USA blamed for poor air quality and 
childhood asthma.
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Who contributes (most) to urban and rural air pollution with carbonaceous 
airborne particulate matter (PM) ? 
Identification of source specific signatures of utmost importance for subsequent 
source attribution and apportionment. Signatures not easy to obtain for 
carbonaceous PM. Classification often only in terms of elemental and organic 
carbon: EC and OC. Scheme too primitive for source apportionment. We 
propose use of X-ray techniques for characterization and molecular speciation 
of carbonaceous PM. Emphasized are recent results on diesel exhaust, wood 
smoke, urban PM and others with C(1s) NEXAFS spectroscopy, which appears 
superior to IR and TEM-EELS, and GC-MS. We also present SAXS and 
WAXS ( “diffuse XRD”  ) data on diesel exhaust PM (DPM) and believe that 
these relatively old and simple techniques are quite useful and underestimated 
for carbonaceous PM characterization.

• Diesel PM not necessarily major contributor to Urban PM

• TEM-EELS performs poor for molecular carbon speciation

• NEXAFS performs very well for carbon speciation and can provide 

characteristic source signatures.

• WAXS, SAXS quite helpful for characterization of carbon-rich PM

• Be aware of radiation damages, in particular in STXM.
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Left: Series of Scanning Transmission X-ray Microscopy (STXM) images of load 
soot  particles, for energies from 282.5 eV to 296.0 eV. Due to X-ray optical 
contrast, spatial chemical variations allow to assign specific absorption spectra to 
single particles or even particular sample regions. Right: NEXAFS of single (load 
___, idle ---) soot particles from Diesel and oxygenated Diesel, as obtained with 
STXM.
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Right: NEXAFS spectra of 
Diesel, Oxygenated Diesel, 
Motor Oil, and Soot, all obtained 
with STXM. C=C bonds are 
found at 285 eV, C=H at 287 eV.
Center: Peak assignment for Jet, 
Gasoline enegine and diesel 
engine PM. 
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Left: X-ray diffractograms from load/idle soot, and reference Bragg peaks of 
graphite (2H Graphite PDF 26-1079). Center: Deconvolution of Peak into 
(002) and γ-sideband for determination of aromaticity. Right: Comparison of 
load/idle soot XRD from Diesel and oxygenated Diesel Mix A, Mix B.

Quantitative analysis of diffuse XRD diffractograms (WAXS) provides 
information on aromaticity (area under γ-band peak vs. the entire peak area, 
including (002) peak), ratio of crystalline/amorphous carbon (background 
scattering), and crystallite sizes (Scherrer Formula).

Idle soot particles have smaller crystallites than load soot. Aromaticity higher 
for idle soot from oxygenated Diesel (Mix A, Mix B). Idle soot contains more 
amorphous carbon than crystalline carbon. Adding oxygenates to fuel causes 
bigger differences in the structure between idle and load soot, in line with 
NEXAFS and TGA.

Left: Log-log plot of small angle scattering curves reveal at least 5 size
ranges in Diesel PM, with size L=2π/q. Curve with open symbols was 
obtained after subtraction of  Porod- and constant background scattering. 
Exponent of decay allows determination of fractal dimension, and was close 
to –4 for high q range and thus indicates smooth surfaces of primary particles 
and sub-units. For low q, exponents of decay are close to –3. Right: Maxima 
in Kratky plots of scattering curves provide information about compactness 
of soot particles and size of agglomerates: L=π/q.

Elementary particles sizes 1-2 nm range. Form compact cluster to built subunits 
of 15-20 nm size. These build up larger structures (primary particles) of 40-80 
nm, which form aggregates. Aggregates are found at q-values of 0.001 1/A, 
though harder to resolve in the SAXS curves. Idle soot has generally larger 
particles than load soot.

Soot Elementary
units D[nm] 

Sub units
D [nm]

Primary 
Particles D [nm]

high q 
exponent 

Fractal 
dimension

low q
exponent

Fractal 
dimension

Diesel, idle 1.5 17.4 49.16 3.99 2.01 3.28 2.72

Diesel, load 1.6 14.5 41.50 3.86 2.14 3.12 2.88

Mix A, idle 1.9 21.1 (14.2 78.29 3.97 2.03 3.02 2.98

Mix A, load 1.4 13.8 (12) 36.78 3.96 2.04 3.09 2.91

Mix B, idle 2.0 14.3 (14.5 83.85 3.92 2.08 2.96 2.96

Mix B, load 1.4 22.0 (18.6 48.73 3.98 2.02 2.75 2.75

Left: Diesel exhaust from heavy duty truck. Right: Smog 
episode in Ticino Valley, 5 Feb. 2006 (Photo courtesy 
Agneta B. Braun)
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Left: Comparison of spectra from graphite, 
diesel exhaust, carbon black, and ethylene 
soot reveals their graphitic nature due to the 
aromatic setting of carbon atoms in double 
bonds: C=C. The corresponding π resonance 
is found at 285 eV. The plateau from 292 to 
310 eV is typical for electronically well 
conducting soot and graphite samples.

Spectro-microscopy with the Scanning Transmission X-ray Microscope (STXM) 
allows for chemical contrast variation on sub-micrometer scale. Every pixel on a 
STXM image can be assigned a NEXAFS spectrum, and every energy can be 
assigned one image. Image on the right shows the STXM microscope at beamline
X1A in Brookhaven National Lab (NSLS).
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Diesel PM exposed to air, sunlight and humidity for 7 days shows less 
surface functional groups and appears “more graphitic” than unexposed 
DPM. Important finding for conclusion whether urban PM is dominated by 
DPM. Interestingly, single wall carbon nanotubes exhibit a similar change of 
spectra when oxidized in air in a furnace.

Indoor PM not necessarily rich in carbon. Data acquisition and 
processing need care and caution. Don’t take these data literally. Dust 
samples collected in 1) Delta Airlines passenger air plane cabin, 2) SBB 
smokers railway cabin. Not shown here, dust from home in Limestone 
is rich Kentucky significant source of carbonate.
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Aromaticiy of oxygenated and non-
oxygenated diesel exhaust PM for idle and 
load engine conditions.

NEXAFS and WAXS data reveal that ferrocene can significantly suppress
graphitization of diesel exhaust.
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Extraction of volatiles from DPM with subcritical water. 
Exposure to soft X-rays causes decarboxylation and 
generation of a carbonate resonance. Quantitative kinetic
studies on photolysis possible.

Attempted modelling of 
urban PM (NIST 1648 
Standard collected in St. 
Louis MO, USA) by linear 
combination of spectra from
diesel exhaust PM and 
woodsmoke. It doesn‘t work
without adding at least one
3rd. component.

Woodsmoke from dry and humid wood
Woodsmoke PM C(1s) NEXAFS 
spectra show significant C-OH 
resonance at 287 eV. PM from wet
wood shows strong response from
quinone and carboxyl groups, while
dry wood doesn‘t. Chimney of 
sample P eventually caught fire !

Toxicological Studies

Correlation of C(1s) NEXAFS peak
heights and protein fold increase indicate
toxicity and toxic surface functional groups
in diesel exhaust PM.

Left, above: C(1s) spectra of DPM 
residuals look quite similar to 
spectra from unextracted DPM.
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